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BACKGROUND AND OBJECTIVES: Meningioma, the most common primary intracranial tumor, presents challenges in
surgical treatment because of varying tissue stiffness. This study explores the molecular background of meningioma
stiffness, a critical factor in surgical planning and prognosis, focusing on the utility of microRNAs (miRNAs) as diagnostic
biomarkers of tissue stiffness.
METHODS: Patients with meningiomas treated surgically at the University Hospital Brno were included in this study.
Total RNA, isolated from tumor tissue samples, underwent quality control and small RNA sequencing to analyze miRNA
expression. Differentially expressed miRNAs were identified, and their association with tumor stiffness was assessed.
RESULTS: This study identified specific miRNAs differentially expressed in meningiomas with different stiffness levels.
Key miRNAs, such as miR-31-5p and miR-34b-5p, showed significant upregulation in stiffer meningiomas. These findings
were validated using reverse transcription-quantitative polymerase chain reaction, revealing a potential link between
miRNA expression and tumor consistency. The expression of miR-31-5p was most notably associated with the stiffness of
the tumor tissue (sensitivity = 71% and specificity = 83%).
CONCLUSION: This research highlights the potential of miRNAs as biomarkers for determining meningioma tissue
stiffness. Identifying specific miRNAs associated with tumor consistency could improve preoperative planning and
patient prognosis. These findings pave the way for further exploration of miRNAs in the clinical assessment of
meningiomas.
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W ith an annual incidence of approximately 8 to 10 cases
per 100 000 people, meningioma is the most common
primary intracranial tumor.1,2 Surgical treatment is the

main treatment, with the aim of total resection of the tumor.
The prognosis of patients with meningioma is determined by the
anatomic location, the radicality of the resection, and the his-
tological grade of the tumor according to the World Health
Organization.3,4 The radicality of the surgical procedure is mainly
determined by the localization of the meningioma and its rela-
tionship to the surrounding structures.5 An equally important
factor influencing the course and the outcome of surgery is the

ABBREVIATIONS: ECM, extracellular matrix; EMT, epithelial-
mesenchymal transition; logFC, log2 fold-change; miRNAs,
microRNAs; QC, quality control; T2WI, T2-weighted imaging.
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stiffness/consistency of the tumor tissue. Very rigid meningiomas
often adhere to the skull base, growing around a crucial cerebral
artery. Complete removal becomes challenging because of the
exceptionally high risk of injuring or closing the artery. Conse-
quently, the stiffness of the meningioma significantly affects the
surgical procedure’s course, the size of the residual tumor, post-
operative care, and the patient’s prognosis.6-9 Despite its substantial
influence on patient management, meningioma stiffness has not
been thoroughly studied to date. Genetic predisposition, among
other factors, plays an essential role in the etiological development
of meningiomas; this study aims to identify biomarkers in tumor
tissue capable of recognizing solid and thus surgically challenging
cases. These biomarkers could potentially be further identified as
circulating molecules in the patient’s peripheral blood or cere-
brospinal fluid, significantly streamlining surgical planning.
Molecules that are certainly involved in the biological behavior of

meningiomas and that would undoubtedly be useful biomarkers are
microRNAs (miRNAs). These short noncoding RNAs play a key
role in the regulation of gene expression at the post-transcriptional
level. In the world of biology and medicine, miRNAs are in-
creasingly recognized for their potential in the diagnosis and
treatment of various diseases, including cancer. In meningiomas,
some miRNAs have been described to be differentially expressed in
tumors compared with healthy tissue and others regulate the
meningioma cell cycle, proliferation, and apoptosis.10-14 Moreover,
miR-224 was associated with a better prognosis.15

For the possibility of less invasive diagnosis from patient blood
or cerebrospinal fluid, of interest is the work by Carneiro et al16

who found increased plasma levels of miR-181d in patients with
meningiomas, whereas Li et al17 identified decreased levels of
miR-18a in blood serum and cerebrospinal fluid in invasive
meningiomas. Global profiling of miRNA levels in the cere-
brospinal fluid of patients with meningioma was also performed
by Kopkova et al.18 This study revealed that miR-140-5p and
miR-196b-5p showed significantly higher levels in patients with
cancer compared with the control group treated for normotensive
hydrocephalus. Finally, a multiphase study by Zhi et al19 iden-
tified a panel of 6 miRNAs occurring in serum that successfully
stratified patients with meningioma from a healthy control group.

METHODS

Study Design and Patient Samples
The patients with consecutive meningioma were surgically treated in

2021 and 2022 at one Department of Neurosurgery. After resection, part
of the tumor tissue was treated with formalin for histopathological
evaluation, and part of the tissue was immediately placed on ice and sent
to the laboratory for further processing and cryopreservation at �80°C.
The study was approved by the local ethics committee. A signed informed
consent was obtained from each patient before the surgery. The study
methodologies conformed to the standards set by the Declaration of
Helsinki. Detailed clinicopathological characteristics of the patient co-
horts included in the exploratory and validation phases of the study are
presented in Table 1.

Assessment of the Consistency/Stiffness of
Tumor Tissues

For assessing the objective stiffness of meningiomas, we used the
CUSA Excel ultrasonic aspirator (CUSA) from Integra. This device,
standardly used in meningioma surgery, performs simultaneous irriga-
tion, selective fragmentation, and aspiration of tumor tissue. It has ef-
fective power control in frequencies from 23 kHz to 36 kHz and has a
very simple setup and control, where the individual frequencies are
expressed as values from 0% to 100% to correspond to the minimum and
maximum power of the device, ie, selective fragmentation. This scale then
allows us to assess at what percentage of the instrument power the se-
lective fragmentation of the meningioma occurs, facilitating a straight-
forward evaluation of the meningioma’s consistency or stiffness. Because
meningiomas are often composed of several parts with different stiffness,
we always report the highest CUSA power used during meningioma
resection. That is the CUSA power value with which total extirpation of
the tumor can be performed. The analyzed samples always come from
tissue aspirated with this highest power. The threshold dividing me-
ningiomas to less and more stiff is 60% of the aspirator power.

Small RNA Sequencing
Total RNA enriched for small RNA species was isolated using the

mirVana miRNA Isolation Kit (Thermo Fisher Scientific) in accordance
with the manufacturer’s instructions. Twenty-three total RNA samples
with RNA integrity number ≥7.0 were used for constructing libraries
using the QIAseq miRNA Library Kit (Qiagen). Libraries were pooled in
equimolar ratio based on their molarity, calculated using an online
weight-to-moles conversion calculator for nucleic acids. The library pool
underwent processing in accordance with the NextSeq System Denature
and Dilute Libraries Guide.20 Single-read sequencing with a 75 bp read
length was carried out using the NextSeq 500 Sequencing System and
NextSeq 500/550 High Output v2 kit (75 cycles) (all Illumina).

The prealignment quality control (QC) of the sequencing data was
conducted using FastQC (version 0.11.9).21 Reads underwent quality
trimming with cutadapt,22 and reads shorter than 15 bp were excluded
from the data set. The remaining reads were then mapped to the miRbase
database (version 22)23 using the miraligner tool (version 3.2).24

Comprehensive reports, including numerical and graphical QC out-
put, were compiled through MultiQC (version 1.7).25 All statistical
analyses were performed in the R environment (version R4.3.1).

Differential expression analysis was carried out using the DESeq2
package (version 1.41.8) from Bioconductor (version 3.18).26 Unsu-
pervised clustering was conducted using the complete linkage method
(farthest neighbor clustering) with the Euclidean distance metric.
MiRNA molecules with expression levels exceeding 1 read per million in
at least 5 samples were included in the analysis and compared across the
different meningioma groups. The results were visualized using heatmaps
with clustergrams. All miRNAs having Benjamini-Hochberg corrected
P-value smaller than 0.05 were considered as significantly differently
expressed. The data sets presented in this study can be found in online
repositories or shared by the authors on reasonable request.

Validation of Sequencing Results
Total RNA extracted from 38 samples was reverse transcribed into

cDNA using the TaqMan MicroRNA Reverse Transcription Kit. The
expression levels were analyzed by reverse transcription-quantitative
polymerase chain reaction using TaqMan Universal Master Mix II
and TaqMan MicroRNA Assays (all Thermo Fisher Scientific).
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Expression levels were normalized to the average expression of hsa-let-7d-
5p, hsa-miR-29a-3p, and hsa-miR-93-5p. Relative expression levels were
then compared between less and more stiff tumor samples using the
Mann-Whitney test and analyzed by receiver operating characteristic
(ROC) in R environment.

RESULTS

Next-Generation Sequencing Analysis of MicroRNAs in
Meningioma Tissue Samples With Varying Stiffness
Reveals Differentially Expressed Molecules
In the exploratory phase, we conducted small RNA sequencing

to identify miRNA molecules with different expression profiles
between 2 groups categorized by tumor tissue stiffness. The group

of less stiff meningiomas included 13 samples that could be as-
pirated with the CUSA Excel ultrasonic aspirator at 60% power
and below. The group with the stiffer tumors included 10 samples
that had to be aspirated at more than 60% of the aspirator power.
Of the 798miRNAs that were taken into the analysis, 73miRNAs
were significantly differentially expressed among 2 groups
(P-value<.05), with 18 miRNAs having P-values smaller than .01
(Table 2, Figure 1A).
The top 22 significantly differentially expressed miRNAs

(P-value <.05, log2 fold-change [logFC] ≥ 1 or logFC ≤ �1, and
baseMean >20) were able to classify stiffer meningiomas with
70% sensitivity and 85% specificity (Figure 1B). The most sig-
nificantly upregulated miRNAs (adjusted P-value <.05) in more
stiff tumors were miR-124-3p, miR-675-3p, and miR-675-5p,

TABLE 1. Clinicopathological Characteristics of the Patient Cohorts Included in the Exploratory and Validation Phases of the Study

Parameter

Exploratory phase, n = 23 Validation phase, n = 38

N % N %

Sex

Male 5 21.7 9 23.7

Female 18 78.3 29 76.3

Age at diagnosis (y) median (25th-75th percentile) 61.2 (46.6-69.0) 61.7 (48.8-70.0)

World Health Organization grade

I 18 78.3 30 78.9

II 5 21.7 7 18.4

III 0 0 1 2.6

Histological subtype

Meningothelial 9 39.1 18 47.4

Transitional 5 21.7 5 13.2

Fibrous 4 17.4 6 15.8

Metaplastic 0 0 1 2.6

Atypic 5 21.7 7 18.4

Anaplastic 0 0 1 2.6

Simpson

I 8 34.8 11 28.9

II 3 13.0 4 10.5

III 9 39.1 16 42.1

IV 3 13.0 7 18.4

Tumor stiffness

&60% 13 56.5 24 63.2

>60% 10 43.5 14 36.8
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with the last 2 arising from the same precursor miRNA. Among
the most downregulated miRNAs in stiffer meningiomas were
miR-130a-3p and miR-130a-5p, also arising from the same
precursor miRNA.

Validation of the Expression of Selected MicroRNAs—
miR-31-5p Identifies Stiff Meningiomas With High
Specificity
Based on the small RNA sequencing analysis, 9 miRNAs (miR-

31-5p, miR-34b-3p, miR-34b-5p, miR-34c-5, miR-124-3p, miR-
144-3p,miR-483-5p,miR-675-3p, andmiR-1299) were selected for
the validation phase according to the following criteria—P < .05;
baseMean >50 reads; and logFC < �1.5 or logFC >1.5 (Figure 2).
In the validation phase, the statistical analysis of single-

molecule reverse transcription-quantitative polymerase chain re-
action data has shown that miR-31-5p (P = .014; FC = 4.2) and
miR-34b-5p (P = .018; FC = 2.1) are significantly upregulated in
stiff meningiomas (Figure 3A). Although miR-34c-5p (P = .058;
FC = 2.2) and miR-483-5p (P = .077; FC = 3.7) also appear to be
more expressed in stiff meningiomas, this observation is not
statistically conclusive. MiR-144-3p, miR-124-3p, miR-34b-3p,
miR-675, and miR-1299 showed no difference in expression
between the 2 compared groups.
When specifically analyzing grade I meningiomas with varying

degrees of stiffness, miR-31-5p (P = .031; FC = 5.3), miR-34b-5p
(P = .049; FC = 2.4), and miR-483-5p (P = .049; FC = 3.2)
exhibited significantly higher expression in stiff meningiomas
compared with their less stiff counterparts (Figure 3B). No sta-
tistically significant trend in expression levels was observed for the
other miRNAs when comparing the studied groups.
ROC analyses, aimed at identifying miRNAs with optimal

distinguishing ability between less (≥60%) and more (>60%) stiff
meningiomas, have revealed that miR-31-5p alone shows the best
ability to distinguish stiff tissue samples with area under curve =
0.741 (95% Cl [0.546-0.936] estimated by the DeLong method
with 2000 stratified bootstrap replicates) (Figure 4A). The best
cutoff for splitting was selected as value which maximizes product
of sensitivity and specificity (sensitivity = 71.43% with 95% CI
[50-92.86] and specificity = 83.33% with 95% CI [66.67-95.83];
accuracy of such cutoff is 78.95%). Notably, in grade I me-
ningiomas alone, miR-31-5p again demonstrates superior per-
formance (area under curve = 0.745 with 95% CI [0.528-0.962];
sensitivity = 70% with 95% CI [40-90]; specificity = 80% with
95%CI [60-95]; accuracy = 75%) (Figure 4B). The specificity and
sensitivity of other individual miRNAs and various miRNA
combinations have been comparatively lower.
To identify the clinicopathological parameters on which me-

ningioma stiffness depends, the following variables were considered:
the patient’s age at diagnosis, theWorld Health Organization grade
of the tumor, the patient’s sex, and the level of miR-31-5p in the
tumor (Table 3). The cutoff separating samples with low and high
miR-31-5p expression level was established at 0.0029667 of nor-
malized expression based on the results of ROC analysis.

The data reveal that only the expression level of miR-31-5p in
tumors is associated with meningioma stiffness, with tumors
exhibiting high levels of miR-31-5p being 12.5 times more likely
to be stiff (Fisher exact test P-value = .0014). No statistically
significant association of other clinicopathological parameters
with meningioma stiffness was confirmed. By applying the
multivariate logistic regression, the level of miR-31-5p in me-
ningiomas was confirmed as an independent stratification factor
(Table 4).

DISCUSSION

Determining the consistency of meningiomas is not always
straightforward. Although MRI signal intensity has been used to
predict the consistency of the tumor and its histopathological
subtype, there is no universally accepted method to determine the
consistency of meningiomas. Although T1-weighted imaging is
not considered particularly useful for predicting the consistency of
a tumor, T2-weighted imaging (T2WI) has shown a good cor-
relation with the consistency of a tumor as observed during
surgery and with postoperative histopathological findings.27,28

Figure 5 shows examples of MRI findings in 2 patients with
meningioma of different stiffness (Figure 5A-5C and 5E-5F)
using the methodology of measuring signal changes according to
Smith et al27 in correlation with miRNA findings.
However, although numerous publications suggest that T2WI

is a promising tool for predicting tumor consistency, its efficacy
has not been formally confirmed. Many of these studies are
limited by small participant numbers and often rely on retro-
spective data, with inconsistent findings across different research.
The true diagnostic accuracy of T2WI remains unclear in most
cases, and where it has been assessed, the sensitivity and specificity
are frequently inadequate. Furthermore, variables such as dif-
ferences in MRI machine capabilities, imaging protocols, and
issues with the methodological approach—specifically concerning
qualitative vs quantitative evaluation—can affect the reliability
and generalizability of these studies. Variations in the benchmarks
used to measure tumor consistency and other disparities in how
data are interpreted may also compromise the robustness of the
findings. Several more advanced MRI techniques such as
diffusion-weighted imaging (Figure 5C and 5F), magnetic reso-
nance elastography, and magnetic resonance spectroscopy have
been used to characterize the meningioma stiffness.27 However,
some of these modalities may require special equipment or specific
training for interpretation, limiting their widespread availability
and use.27,29 In any case, evaluation of various modalities of MRI
imaging in relation with miRNA analysis seems to be a desirable
direction for further research.
Meningiomas are associated with various molecular alterations.

Therefore, it is logical to assume that the consistency of me-
ningiomas is also associated with a specific molecular genetic
profile. In 2016, Zhao et al identified 132 genes differentially
expressed between soft and hard texture meningiomas; both
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TABLE 2. Significantly Differentially Expressed miRNAs Between Less (≤60%) and More (>60%) Stiff Meningiomas

microRNA baseMean FC (log2) P value microRNA baseMean FC (log2) P value

miR-124-3pa 207 4.75 4.54 × 10�7 miR-130a-5p 59 �0.90 1.67 × 10�3

miR-675-3pa 124 3.81 2.91 × 10�6 miR-130a-3p 29 890 �0.82 2.42 × 10�3

miR-675-5pa 49 4.03 7.09 × 10�6 miR-17-5p 2395 �1.24 1.12 × 10�2

miR-671-3p 62 0.76 3.57 × 10�4 miR-3126-3p 5 �1.39 1.13 × 10�2

miR-6842-3p 11 1.33 4.31 × 10�4 miR-340-3p 108 �0.97 1.20 × 10�2

miR-34c-3p 30 2.29 1.44 × 10�3 miR-30b-5p 14 153 �0.63 1.21 × 10�2

miR-2114-3p 30 1.06 1.96 × 10�3 miR-144-3p 3372 �1.64 1.30 × 10�2

miR-31-5p 106 1.91 2.33 × 10�3 miR-30e-5p 70 899 �0.30 1.57 × 10�2

miR-34c-5p 1643 1.99 4.27 × 10�3 miR-32-3p 109 �0.72 1.58 × 10�2

miR-181a-5p 15 833 1.13 5.77 × 10�3 miR-1911-5p 37 �2.70 1.61 × 10�2

miR-425-5p 2733 0.61 6.04 × 10�3 miR-625-3p 288 �0.82 1.73 × 10�2

miR-92b-3p 1026 0.98 6.23 × 10�3 miR-6726-3p 5 �0.89 2.04 × 10�2

miR-10527-5p 9 0.91 6.49 × 10�3 miR-1299 99 �1.70 2.42 × 10�2

miR-2277-5p 23 0.83 7.01 × 10�3 miR-6511b-3p 23 �0.69 2.64 × 10�2

miR-2114-5p 301 1.23 8.00 × 10�3 miR-625-5p 214 �0.71 2.82 × 10�2

miR-6516-5p 8 1.15 9.53 × 10�3 miR-19a-3p 10 976 �0.89 2.87 × 10�2

miR-449a 21 1.04 1.01 × 10�2 let-7d-3p 1018 �0.67 2.97 × 10�2

miR-491-5p 161 0.89 1.01 × 10�2 miR-1298-5p 45 �2.75 3.06 × 10�2

miR-34b-3p 57 1.75 1.06 × 10�2 miR-374a-3p 5241 �0.51 3.35 × 10�2

miR-1843 76 0.75 1.13 × 10�2 miR-1264 28 �2.08 3.39 × 10�2

miR-181b-5p 3901 0.96 1.18 × 10�2 miR-3160-3p 9 �1.33 3.41 × 10�2

miR-548i 5 1.39 1.28 × 10�2 miR-548o-3p 7 �0.98 3.89 × 10�2

miR-548ba 7 1.59 1.30 × 10�2 miR-590-5p 553 �0.65 4.08 × 10�2

miR-100-5p 45 583 1.02 1.30 × 10�2 miR-30e-3p 11 014 �0.37 4.24 × 10�2

miR-501-3p 31 0.80 1.35 × 10�2 miR-324-5p 921 �0.46 4.36 × 10�2

miR-483-5p 1268 1.98 1.42 × 10�2 miR-151a-5p 3469 �0.61 4.47 × 10�2

miR-3129-5p 9 0.73 1.42 × 10�2 miR-548h-3p 36 �0.64 4.56 × 10�2

miR-504-5p 28 1.44 1.51 × 10�2 miR-186-3p 110 �0.67 4.66 × 10�2

miR-34b-5p 456 1.67 1.62 × 10�2

miR-378a-3p 1994 0.67 1.79 × 10�2

miR-339-3p 941 0.61 1.82 × 10�2

miR-361-5p 9336 0.36 2.01 × 10�2

miR-592 24 1.50 2.12 × 10�2

miR-486-3p 6 1.33 2.15 × 10�2

miR-21-5p 185 144 0.82 2.29 × 10�2
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alpha-2 type I collagen and osteomodulin were the most changed
molecules. Gene ontology analysis of the differentially altered
genes suggested that dysfunction in extracellular matrix (ECM)

assembly and disassembly could contribute to the differences
between soft and hard tissue textures. In addition, pathway
analysis indicated that the ECM itself was the primary factor

TABLE 2. Continued.

microRNA baseMean FC (log2) P value microRNA baseMean FC (log2) P value

miR-1179 37 0.73 2.40 × 10�2

miR-671-5p 1576 0.65 2.62 × 10�2

miR-132-3p 1966 0.72 2.69 × 10�2

miR-149-5p 547 0.89 3.17 × 10�2

miR-549a-5p 132 0.97 3.25 × 10�2

miR-203b-3p 5 1.62 3.58 × 10�2

miR-423-3p 2125 0.56 3.70 × 10�2

miR-628-5p 446 0.58 4.22 × 10�2

miR-5010-3p 9 0.82 4.44 × 10�2

miR-3117-3p 16 1.08 4.62 × 10�2

FC, fold-change; miRNAs, microRNAs.
aIndicates miRNAs with adjusted P-value smaller than .05.

FIGURE 1. Hierarchical clustering discriminates less (≤60%) and more (>60%) stiff meningiomas based on the significantly expressed miRNAs. A, All 73 significantly
dysregulated miRNAs (P < .05); B, The top 22 dysregulated miRNAs according to adjusted P-value. miRNA, microRNA.
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distinguishing the 2 subtypes.30 However, the value of the study is
diminished by the minimal number of analyzed samples, which
can lead to false-positive results. Unfortunately, we did not find

more research articles studying the relationship between me-
ningiomas’ texture/consistency and their molecular genetic
background.

FIGURE 2. Selected miRNAs meeting the criteria for inclusion in the validation by reverse transcription-quantitative polymerase chain reaction. miRNA microRNA.

FIGURE 3. Results of comparisons between less (≤60%) and more (>60%) stiff meningiomas based on the expression of selected miRNAs included in the validation phase. A,
All meningioma samples included in the validation phase; B, World Health Organization grade I meningioma samples only. *Mann-Whitney P < .05. miRNA microRNA
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Our study focused on miRNAs because they stand out for their
high stability in formalin-fixed paraffin-embedded samples and
biofluids, including peripheral blood and cerebrospinal fluid.
These are all materials that are very useful for the diagnosis of
meningiomas in clinical diagnostic practice.18,31-34 In addition,
the association of miRNAs with the biological characteristics of
meningiomas has been described many times.35,36 In the context
of the potential use of miRNAs as predictors of tumor tissue

consistency/texture, we can mention the work byMarigliano et al,
who investigated correlations between advanced computer to-
mography (CT) imaging andmiRNA expression. They found that
CT texture analysis enables distinguishing normal from patho-
logical tissues, and a higher coefficient of determination between
CT-based entropy and miR-21-5p expression was evidenced in
tumor vs normal tissue. This suggests the potential of miRNAs to
reflect tissue characteristics.37 No other studies describing the

FIGURE 4. Receiver operating characteristic curves of miR-31-5p and its distinguishing ability between less (≥60%) and more (>60%) stiff meningiomas. A, All
meningioma samples included in the validation phase; B, World Health Organization grade I meningioma samples only. AUC, area under curve.

TABLE 3. The Contingency Tables Showing Distributions of miR-31-5p Level, Age at Diagnosis, WHO Grade, and Patient Sex in Relation to
Tumor Stiffness in Meningioma Patients

Count
miR-31-5p Age (y) WHO grade Sex

Total % Low High <60 >60 I II/III Female Male

Less stiff tumors (≤60%) 20 4 13 11 20 4 17 7

52.6 10.5 34.2 29.0 52.6 10.5 44.7 18.4

More stiff tumors (>60%) 4 10 4 10 10 4 12 2

10.5 26.3 10.5 26.3 26.3 10.5 31.6 5.3

Fisher exact test P-value 0.0014 Not significant Not significant Not significant

Odds ratio (95% CI) 12.5 (2.57-60.7)

WHO, World Health Organization.
Fisher exact tests were applied.
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relationship between miRNAs and tissue consistency have been
published to date, but these molecules are known to be important
in regulating biological processes such as collagen formation,

epithelial-mesenchymal transition (EMT), and fibrosis. These are
interrelated processes that can affect tissue structure and stiffness.
Collagen, a major component of the ECM, is overproduced

TABLE 4. Multivariate Logistic Regression of Tumor Stiffness and Clinicopathological Predictors Including miR-31-5p

Condition OR (95% Cl) P value Model accuracy

miR-31-5p, high vs low 25.24 (3.86-310.60) .0028 86.84%

Age (y), older than vs younger than 60 7.67 (1.11-86.25) .057

WHO grade, I vs II/III 0.16 (0.01-1.35) .11

Sex, male vs female 0.04 (0.00-0.54) .042

OR, odds ratio; WHO, World Health Organization.

FIGURE 5. Demonstration of MRI findings in 2 patients with meningioma of different stiffness. A-C, In the patient with a surgically verified lower
stiffness (CUSA power 40%) meningothelial meningioma, higher values of T2 signal ratio of the lesion relative to the white matter of the cerebellar
peduncle (2.004) were measured,D-F, whereas in the patient with a higher stiffness (CUSA power 90%) atypical meningioma, this value was markedly
lower (1.126). In correlation with this finding, the measured diffusivity value was higher in the less stiff meningioma (747*10�6 mm2/s) compared with
the more stiff meningioma (506*10�6 mm2/s), and the rigidity of the meningiomas was correctly classified by molecular analysis in both patients. A and
D, T2-weighted image in axial plane, B and E, contrast-enhanced T1-weighted image in axial plane, and C and F, diffusivity map in axial plane
calculated from multi-b-factor diffusion-weighted MRI imaging.
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during fibrosis, leading to increased tissue stiffness. EMT is a
biological process where epithelial cells transform into mesen-
chymal cells, contributing to the production of excessive ECM,
including collagen, and the development of fibrosis. This tran-
sition is associated with the loss of tissue elasticity and increased
tissue thickness. These processes can also be identified in menin-
giomas. A typical example is fibrous meningiomas, the second most
common histological subtype of meningioma found in∼50% of all
cases, which is characterized by the presence of extensive fibrosis.
Excessive deposition of fibrous tissue, including collagen, con-
tributes to their characteristic histological appearance.
In our study, we confirmed miR-31-5p, miR-34b-5p, miR-34c-

5p, and miR-483-5p as differentially expressed between less and
more stiff meningiomas. Interestingly, miR-34b/c and miR-483
have been associated with the development of fibrosis in some
studies.38-43 Specifically, miR-34c attenuates kidney fibrosis with
ureteral obstruction and is also associated with liver fibrosis.41

Another member of the miR-34 family, miR-34b-5p, is also as-
sociated with liver fibrosis.40 It appears that both of these molecules
may be regulated by the protein kinase C-Jun N-terminal Kinase
and the transcription factor Forkhead Box O, both of which help
the cell cope with stress, among other things.43 MiR-483 in turn
regulates liver fibrosis in mice through binding to platelet-derived
growth factor-β and tissue inhibitor of metalloproteinase 2.39,42

MiR-31-5p, miR-34b-5p, and miR-34c-5p are associated with
EMT.44-48 MiR-31 has been shown to enhance EMT in cervical
cancer.46 This miRNA is also highly expressed in colorectal cancer
cell lines undergoing EMT. In lung cancer, miR-31 over-
expression correlates with EMT markers.48 Another study re-
vealed that miR-34b-5p reduces collagen and elastin expression
but increases matrix metalloproteinase-1, affecting processes like
cell adhesion and collagen synthesis.44 This suggests miR-34b/c’s
potency as an EMT suppressor.44,45 Finally, miR-34c-5p appears
to suppress EMT in non–small-cell lung cancer.47

So far, very little is known about the molecular background of
the structural changes in meningiomas, and a great deal of effort is
still needed to understand this phenomenon sufficiently. How-
ever, miRNAs will likely play a significant role in this process, and
analysis of their expression patterns or levels, especially in body
fluids, could be a valuable approach to predicting the stiffness of
meningiomas. Together with imaging methods, they could create
a powerful predictive tool that would significantly increase the
efficiency of surgical planning and improve patient survival.

Limitations
The main shortcomings of this study were the limited size of the

validation phase cohort and the lack of an external data set. For a
deeper understanding of the whole issue leading to improved di-
agnosis and management of patients with meningiomas, it would
be very beneficial to correlate molecular data with outcomes from
advanced imaging methods in future studies. For noninvasive
diagnosis, performing miRNA analysis in biofluids (peripheral
blood and/or cerebrospinal fluid) will also be necessary.

CONCLUSION

This study identified specific miRNAs that are differentially
expressed in meningiomas with varying stiffness, with miR-31-5p
showing the best analytical performance in identifying high-
stiffness tumor tissues. Thus, miRNAs seem to be promising
biomarkers in this regard and, together with advanced imaging
methods, could provide a comprehensive predictive tool to im-
prove surgical planning and patient prognosis. In addition, the
association of the identified miRNAs with processes such as fi-
brosis and EMT suggests a broader role in tumor biology that
merits further investigation.
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